

Régénération osseuse maxillofaciale à partir de cellules souches et de biomatériaux

Inserm U1238, Sarcomes osseux et remodelage des tissus calcifiés Faculté de Médiecine, Université de Nantes, France

pierre.layrolle@inserm.fr

Introduction

- Bone is the most transplanted tissue
 (1 million procedures annually in Europe)
- Autografts is the gold standard but requires another surgery, limited bone stock and pain
- Synthetic biomaterials with mesenchymal stem cells may be an alternative

Bone tissue engineering

Cordonnier et al. Adv Funct Mater 2011 Rosset et al. Orthop Traumatol Surg Res. 2014 Stanovici et al. Curr Res Transl Medicine 2016

4 clinical trials

Maxillo-facial defects before implants

Osteonecrosis of the femoral head

Cleft palates

12 million € 2010-2015

Human Mesenchymal Stem Cells

Delorme et al. Blood 2008

Platelet Lysate for culturing hMSC

- Platelet Lysate from human blood
- Isolation and grow of hMSC in αMEM + 10% PL
- Xenobiotic free culture medium
- PL increased cell proliferation
- Approx. 400 x 10⁶ hMSC produced in 21 days
- PL enhanced osteoblastic differentiation

Chevallier et al. Biomaterials 2010

Biomaterial

BCP = HA/β -TCP 20/80

Manufactured by Biomatlante (CE and FDA approved)

Cell dose of hMSC on bioceramics

Methylene blue

Subcutis implantation in nude mice for 8 weeks

Histology

Brennan et al. Stem Cell Res Ther, 2014

Histology @ 8 weeks

Production and transportation of hMSCs

Mixing cells and biomaterial

5 cm³ BCP 2.5 g

100 million hMSC

Mixing cells and biomaterial

Brennan et al. Stem Cell Res Ther, 2014

Mixing cells and biomaterial

Brennan et al. Stem Cell Res Ther, 2014

hMSC on bioceramics

Subcutis implantation in nude mice for 8 weeks

Histology

Histology

Ectopic bone formation for 12 donors, but high variability between donors

BSEM

Brennan et al. Stem Cell Res Ther, 2014

hMSC engraftment

2x10⁶ hMSC with 50mg BCP implanted subcutaneously for 8 weeks in nude mice

In situ hybridization using the human-specific repetitive *Alu* sequence for identification of human cells (brown –red arrow)

hMSC engraftment in muscle of nude mice

Gamblin et al. Biomaterials 2014

Osteoclastic recruitment with hMSC

Gamblin et al. Biomaterials 2014

Anti-RANKL treatment decreases bone

Bone regeneration with hMSC/BCP?

Calvaria defect (1 mm) in nude mice

Calvaria defects (4 mm) at 8 weeks

Calvaria defects (4 mm) in nude mice

Histology at 8 weeks

Submission to Medicinal agencies

Folders for Paul Ehrlich Institute (Germany)

Bone augmentation prior to dental implants

Pre-op

Post-op

Prof. Sølve Hellem, Dr Cecilie Gjerde; Univ Bergen Completed study with 11 patients

Bone augmentation prior to dental implants

Bone augmentation prior to dental implants

Biopsies taken at insertion of dental implants (+5 months)

Bone formation in contact to BCP granules (=14)

Gjerde et al. Stem Cell Res Ther, 2018

CBCT analysis mean increase in bone width: 4.05 mm mean increase in volume: 887.2 mm³

Reborne

functional dental implants after 3 years (n=14)

Gjerde et al. Stem Cell Res Ther, 2018

Gjerde et al. Stem Cell Research & Therapy (2018) 9:213 https://doi.org/10.1186/s13287-018-0951-9

Stem Cell Research & Therapy

RESEARCH Open Access

Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial

Cecilie Gjerde^{1*}, Kamal Mustafa^{1*}, Sølve Hellem¹, Markus Rojewski²³, Harald Gjengedal¹, Mohammed Ahmed Yassin^{1,4}, Xin Feng¹, Siren Skaale¹, Trond Berge¹, Annika Rosen¹, Xie-Qi Shi¹, Aymen B. Ahmed^{5,6,7}, Bjørn Tore Gjertsen^{5,6,7}, Hubert Schrezenmeier^{2,3} and Pierre Layrolle⁸

MAXIBONE - Cell production sites and clinical centers

6 million € 2018-2021

Randomized Controlled Trial

Primary objective:

to perform a randomized clinical study on 150 patients for maxillofacial bone augmentation with autologous MSC (ATMP) and BCP biomaterial (100 patients) versus autologous bone graft (50 patients) prior to dental implants

Sponsor: University of Bergen

Regulatory pathway: VHP to the Norwegian Medicine agency, EMA, National Ethical committees, submission in October 2018

Begin of inclusions: March 2019 (20 patients/centre, 8 centres)

End of inclusion: March 2020

End of follow up and analysis of results (eCRF): June 2021

End of project: December 2021

3D printing of biomaterials from CT scans Caxibone

3D printing of biomaterials

Control of shape, porosity, composition, cristallinity

Composition: CDA, CO3-AP Porosiy: 60%, ortho et honeycomb

3D printed biomaterials + hMSC

Conclusions & perspectives

- Bioceramics are appropriate scaffolds for bone tissue engineering
- Human mesenchymal stem cells are easily isolated from bone marrow and amplified in culture
- hMSC mixed with BCP induced bone formation.
- hMSC seeded on BCP regenerated critical sized bone defects
- 4 multicentric clinical trials have been performed
 - regeneration of non-union fractures
 - Osteonecrosis of the femoral head
 - Bone augmentation in the mandible prior to dental implants
 - reconstruction of cleft palates in children
- Regeneration of large bone defects with personalized biomaterial and allogeneic cells

Acknowledgements

2010-2015 12 m€, 24 partners 4 clinical trials

2017-2020 6 m€, 11 partners 100 patients

2018-2021 6 m€, 12 partners 150 patients

